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ABSTRACT 26 

Deep-sea corals (DSCs) are important living marine resources, forming both oases of biodiversity 27 

and three-dimensional habitat structure for fishes and invertebrates. However, because of logistical 28 

difficulties and expense of deep-sea exploration, much less is known about the distribution of 29 

DSCs than is known for their shallow-water counterparts. Predictive modeling, therefore, is 30 

essential for estimating the extent of DSC habitat in areas that are unexplored in order to support 31 

conservation efforts, to provide information for effective management of offshore activities 32 

affecting the seafloor, and for future exploration and research. In support of research and 33 

management efforts in the U.S. Northeast (Cape Hatteras, NC north to the Canadian border), we 34 

developed a comprehensive set of habitat suitability models covering this entire geographic region 35 

for nine taxonomic groups of DSCs (Alcyonacea, gorgonian corals, non-gorgonian corals, 36 

Scleractinia, Caryophylliidae, Flabellidae, Pennatulacea, Sessiliflorae, and Subselliflorae). 37 

Maximum entropy (MaxEnt) models were fit to DSC presence records and spatially-explicit 38 

environmental predictors depicting depth and seafloor topography, surficial sediment 39 

characteristics, and oceanography. A stepwise model selection procedure was then implemented 40 

to identify the set of predictor variables that maximized predictive performance for each taxonomic 41 

group. To allow for comparisons across taxonomic groups, the standard MaxEnt logistic 42 

predictions were converted into calibrated classes of habitat suitability. Overall, model 43 

performance was high for all taxonomic groups. Model fit was best for Caryophylliidae, 44 

Sessiliflorae, and Flabellidae, whereas model stability was greatest for the three taxonomic groups 45 

of Alcyonacea. Model results reported here corroborate known distributions of corals in the region. 46 

For example, large structure-forming taxa are predicted to occur mainly in canyon environments, 47 

particularly in areas of steep slope (> 30°); sea pens in softer sediments of the continental shelf 48 
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and slope. Additionally, the models successfully predicted DSC locations during field testing. 49 

Despite the limitations of presence-only data, several novel extensions to the traditional MaxEnt 50 

analysis workflow improved model selection, accuracy assessment, and comparability of results 51 

across taxonomic groups. This approach, when integrated with management processes, could be a 52 

powerful tool for science-based conservation, management, and spatial planning for these marine 53 

resources. 54 

 55 

 56 

 57 

Keywords: cold-water corals, species distribution models, statistical machine learning, MaxEnt, 58 

marine spatial planning, biogeography  59 
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1. INTRODUCTION 60 

Deep-sea corals (DSCs) are conspicuous components of deep-sea ecosystems. Their distribution 61 

is cosmopolitan and most taxa (with the notable exception of Order Pennatulacea) are generally 62 

found at approximately 50-3000 m depth on consolidated substrates of continental shelves, slopes, 63 

submarine canyons, and seamounts (e.g., Spalding et al., 2001; Freiwald et al., 2004; Roberts et 64 

al., 2006; Hourigan et al., 2007). A diverse assemblage of organisms, including many species of 65 

fishes and other invertebrates, some of commercial or recreational importance, utilize the three-66 

dimensional habitat structure provided by DSCs (e.g., Roberts et al., 2009; Buhl-Mortensen et al., 67 

2010; Miller et al., 2012). DSCs are long-lived, slow-growing, sessile organisms that are 68 

susceptible to a variety of anthropogenic impacts including fishing and ocean acidification (e.g., 69 

Guinotte et al., 2006; Turley et al., 2007; Roberts et al., 2009; Ragnarsson et al., 2017). 70 

 71 

DSCs are the focus of significant spatial planning, conservation, and management efforts in the 72 

United States (Hourigan et al., 2017), leading to a critical need for information on their spatial 73 

distribution. This is particularly true for the Northwest Atlantic offshore of the northeastern U.S. 74 

from North Carolina to Maine (hereafter U.S. Northeast). Recently, the Mid-Atlantic Fishery 75 

Management Council protected DSC habitats utilizing the discretionary provisions of the 76 

Magnuson-Stevens Reauthorization Act and, President Obama established the Northeast Canyons 77 

and Seamounts Marine National Monument. Additionally, the New England Fishery Management 78 

Council continues to work towards finalizing their recommendation to protect DSC habitats. Taxa 79 

reported in the historical record for the U.S. Northeast include high diversities of species in the 80 

orders Alcyonacea (soft corals and gorgonians) and Pennatulacea (sea pens), low diversity of 81 
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species in the Order Scleractinia (stony or hard corals), consisting almost entirely of solitary forms, 82 

and few species in the Order Antipatharia (black corals) (Packer et al., 2007; 2017a).  83 

 84 

While there has been considerable interest in protecting DSCs in this region, data describing the 85 

locations of DSCs is limited because of the substantial costs and logistical challenges of surveying 86 

the deep sea. Statistical modeling has proven to be a useful and cost-effective tool to predict the 87 

distribution and extent of suitable habitat for DSCs and other benthic organisms at local scales 88 

(Dolan et al., 2008; Huff et al., 2013; Georgian et al., 2014; Rooper et al., 2014; Rowden et al., 89 

2017), regional scales (Bryan and Metaxas, 2007; Rengstorf et al., 2013; Guinotte and Davies, 90 

2014; Anderson et al., 2016), and globally (Davies et al., 2008; Tittensor et al., 2009; Davies and 91 

Guinotte, 2011; Yesson et al., 2012). In general, habitat suitability modeling examines the 92 

associations between the presence, absence, frequency and/or abundance of organisms and 93 

relevant environmental or habitat variables to identify unexplored areas with similar conditions to 94 

areas of known presence, high frequency and/or high abundance. Presence/absence or abundance 95 

data are preferred because these types of data expand the range of statistical modeling approaches 96 

that can be utilized and allow the prediction of absolute probabilities of occurrence (Elith et al., 97 

2011; Howard et al., 2014). However, initial syntheses of historical data for deep-sea taxa, 98 

particularly at the relatively fine spatial scales demanded by regional planning efforts, often must 99 

rely on presence-only data. Presence-only data contain potentially useful information, but must be 100 

treated carefully and limitations must be recognized. Presence-only data can be used to predict the 101 

relative likelihood that a given parcel of habitat is suitable compared to background environmental 102 

variation. But this likelihood cannot be expressed as a probability of occurrence unless the true 103 

global prevalence (fraction of potential habitat parcels occupied) is known a priori or sampling 104 
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was random and the true global prevalence can be estimated (Elith et al., 2011; Royle et al., 2012). 105 

Practically speaking, presence-only data are seldom collected under a random design, and any 106 

spatial sampling biases, unless known and corrected for, will be reflected in species distribution 107 

predictions derived from these data (Varela et al., 2014). Because of limited DSC collections and 108 

surveys, a tendency to report presence but not absence, and the inaccessibility of the deep ocean 109 

environment, most historical DSC records or databases consist of presence-only data.  Therefore, 110 

methods to maximize the utility of presence-only data for regional DSC model syntheses are 111 

essential to guide next steps in planning, conservation, and management efforts. 112 

 113 

Maximum entropy modeling is a common method for estimating species distributions from 114 

presence-only data (Elith et al., 2011; Merow et al., 2013) and is often implemented using the Java 115 

software MaxEnt (Phillips et al., 2004, 2006). This method has been shown to perform as well or 116 

better than other methods for presence-only data, both generally (Elith et al., 2006; Phillips et al., 117 

2006) and specifically for DSCs (Tittensor et al., 2009; Tong et al., 2013). MaxEnt uses a statistical 118 

machine learning algorithm to estimate functional relationships between environmental variables 119 

and habitat suitability, subject to constraints imposed by the values of environmental variables at 120 

observed presence locations and a condition called maximum entropy (Phillips et al., 2004, 2006). 121 

The maximum entropy condition guarantees, under certain assumptions, that the resulting habitat 122 

suitability value will be the optimum value on which to base a decision about the suitability of a 123 

parcel of habitat in question for a given organism (Ortega-Huerta and Peterson, 2008). However, 124 

MaxEnt is not without pitfalls and controversy (Elith et al., 2011; Royle et al., 2012; Merow et al., 125 

2013; Yackulic et al., 2013).  Here, we take advantage of advances in calculation of information 126 

criteria and model selection for MaxEnt models (Warren et al., 2010; Warren and Seifort, 2011) 127 
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to develop a practical but cautious MaxEnt approach to predict locations of suitable habitat for 128 

DSCs. This approach recognizes the utility of model-based syntheses of available data for 129 

conservation and management planning in the deep sea, while addressing some of the key 130 

limitations in the interpretation and presentation of models based on presence-only information. 131 

 132 

Our goals in this work are threefold: 1) to develop models with sufficient spatial resolution and 133 

accuracy to support regional conservation, management and exploration efforts; 2) to understand 134 

better the distributions of DSCs in the U.S. Northeast and potential environmental drivers and 135 

correlates of these distributions; and 3) to develop improved techniques for maximizing the value 136 

of presence-only data in species distribution modeling, while recognizing and communicating the 137 

associated limitations. 138 

 139 

2. METHODS 140 

2.1 Study area 141 

The study area for this analysis (Figure 1) extended from North Carolina (36.031°N) northward 142 

into the Gulf of Maine to the Canadian border (44.905°N) and offshore to the extent of the NOAA 143 

Coastal Relief Model (CRM; National Geophysical Data Center 1999a, 1999b). The depth range 144 

of the study area (~20–5000 m) was broad enough to cover most known DSC locations in the U.S. 145 

Northeast (Packer et al., 2007). 146 

 147 
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 148 

Figure 1. Map of the study area. Black crosses indicate locations of historical deep-sea coral 149 

presence records. The black line indicates the extent of the study area. The gray line denotes the 150 

200 m depth contour. 151 

 152 

2.2 Deep-sea coral data 153 

2.2.1. Deep-sea coral presence database 154 

We created a database of DSC presence records (>20 m depth) in the study area using the U.S. 155 

Geological Survey (USGS) Cold-Water Coral Geographic Database (CoWCoG; Scanlon et al., 156 

2010) and additional records from museum collection databases (e.g., the Smithsonian Institution), 157 

the published literature, seamount expeditions conducted from 2003-2005, and recent data-mining 158 
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(sources described in Cairns, 2007; Packer et al., 2007; Packer and Dorfman, 2012; Packer and 159 

Drohan, unpublished internal NOAA/NEFSC database. Data custodian email: 160 

dave.packer@noaa.gov). When necessary we updated nomenclature and taxonomy to conform to 161 

current classification (as in Packer et al., 2017a). We checked each record for grammatical errors, 162 

incomplete fields, and incorrect taxonomy for the following fields: order, suborder, family, genus, 163 

and species. We resolved incomplete fields, when possible, by cross checking with the World 164 

Register of Marine Species (WoRMS; WoRMS Editorial Board, 2012) and the Integrated 165 

Taxonomic Information System (ITIS, 2012) as well as obtaining expert taxonomic opinions. We 166 

consulted taxonomic experts when generic and specific names were not assigned to higher 167 

taxonomic categories in WoRMS or ITIS, or when classification schemes in WoRMS or ITIS 168 

conflicted (S. Cairns, L. Watling, pers. comm.). Notwithstanding the likely biases in the database 169 

related to the locations sampled, methods of sample collection, and variation in reporting and 170 

observer expertise (Packer et al., 2007), this compilation represented the best available collection 171 

of georeferenced DSC presence data for the region at the time the models were generated.  172 

 173 

2.2.2. Deep-sea coral taxonomic groups 174 

We organized DSC records into taxonomic groups for modeling (Table 1). These included three 175 

orders, representing three of the four main DSC taxonomic groups: Order Alcyonacea (soft corals), 176 

Order Scleractinia (hard corals), and Order Pennatulacea (sea pens). We did not model Order 177 

Antipatharia (black corals) because there were insufficient records (n < 10) in the study area. 178 

Within each order-level group, we included additional subgroups to highlight functional groups or 179 

to capture higher taxonomic resolution. For example, within Alcyonacea we created separate 180 

models for gorgonian and non-gorgonian corals. We considered these subgroups informative since 181 
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gorgonian corals include the major structure-forming families (those in suborders Calcaxonia, 182 

Holaxonia, and Scleraxonia) of alcyonacean corals whereas non-gorgonian corals, in contrast, 183 

include the true soft corals that are typically smaller in size, lack a rigid skeleton, and, therefore, 184 

are of lesser importance as a structure-forming species. Within the orders Pennatulacea and 185 

Scleractinia we included groups at the suborder level or family level, respectively, when the 186 

number of records and taxonomic resolution were sufficient (Table 1). Others who have used 187 

historical DSC databases to model DSC habitat suitability have noted difficulties with taxonomic 188 

levels below suborder (Yesson et al., 2012; Guinotte and Davies, 2014). Family was the lowest 189 

taxonomic level used in our analysis. Because of the nested arrangement of the taxonomic groups, 190 

some DSC records were included in multiple groups (e.g., a record in the gorgonian coral group 191 

was also included in the Alcyonacea group). Additionally, order-level groups used some records 192 

not included in suborder- or family-level groups (e.g., an unidentified Alcyonacea record could 193 

only be included in the order-level group). Totals for the number of DSC records in each group 194 

reflect this overlap (Table 1). It is also important to remember that although we use order, suborder, 195 

or family when referring to a group, each group represents only those taxa present in the database. 196 

For example, our Scleractinia group does not represent all scleractinians that could potentially 197 

occur in the region. Only solitary cup corals appear in the historical presence records for the U.S. 198 

Northeast. Although Scleractinia is used as a proxy for all hard corals in the region, results should 199 

be viewed with caution; colonial scleractinians could have different habitat requirements than 200 

those of solitary cup corals. 201 

 202 

Our database of DSC presence records contained 1,922 records in the orders Alcyonacea, 203 

Scleractinia, and Pennatulacea (Table 1). Although spatial distributions of these records differed 204 
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among taxonomic groups (Figure 2), they were generally concentrated in or near submarine 205 

canyons, on the continental shelf near the shelf break, and in the Gulf of Maine (Figure 2). The 206 

principal exception was sea pens in the Suborder Subselliflorae, which were much more broadly 207 

distributed on the shelf, extending into shallower areas (Figure 2). In general, records for all groups 208 

spanned the geographic range of the study area, especially at depths >100-200 m. 209 

 210 

Table 1. Taxonomic groups modeled, the order each group is within, description of deep-sea coral 211 

records included in each group, total number of presence records for each group, and number of 212 

model grid cells containing presence records for each group. 213 

Group Order Description 

Number of 

Presence 

Records 

Number of Grid Cells 

containing Presence Records 

Alcyonacea Alcyonacea 
All records in Order 

Alcyonacea 
745 514 

Gorgonian 

corals 
Alcyonacea 

All records in 

suborders Calcaxonia, 

Holaxonia, and 

Scleraxonia 

529 361 

Non-gorgonian 

corals 
Alcyonacea 

All records in 

suborders Alcyoniina 

and Stolonifera 

151 123 

Scleractinia Scleractinia 
All records in Order 

Scleractinia 
262 176 

Caryophylliidae Scleractinia 
All records in Family 

Caryophylliidae 
157 91 

Flabellidae Scleractinia 
All records in Family 

Flabellidae 
105 88 

Pennatulacea Pennatulacea 
All records in Order 

Pennatulacea 
915 396 

Sessiliflorae Pennatulacea 
All records in 

Suborder Sessiliflorae 
150 77 

Subselliflorae Pennatulacea 

All records in 

Suborder 

Subselliflorae 

765 336 

 214 
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 215 

Figure 2. Maps of deep-sea coral presence records within the study area for (a) Alcyonacea, (b) 216 

gorgonian corals, (c) non-gorgonian corals, (d) Scleractinia, (e) Caryophylliidae, (f) Flabellidae, 217 

(g) Pennatulacea, (h) Sessiliflorae, (i) Subselliflorae. Black crosses indicate locations of deep-sea 218 
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coral presence records. The black lines indicate the extent of the study area. The gray lines denote 219 

the 200 m depth contour. 220 

 221 

2.2.3. Spatial thinning of deep-sea coral data 222 

Because our database of DSC presences contains records compiled from numerous surveys with 223 

various protocols and objectives, it is likely affected by both spatial and taxonomic sampling biases 224 

(Varela et al., 2014). Sampling bias can result in models that are overfit (i.e., only predicting 225 

suitable habitat in locations with existing occurrences) to the environmental conditions represented 226 

in the training data (Boria et al., 2014; Varela et al., 2014). If sampling effort can be quantified, 227 

this information can be used during model fitting to correct for sampling bias (Boria et al., 2014; 228 

Varela et al., 2014; Aiello-Lammens et al., 2015). However, this information is not typically 229 

available for databases such as ours that are compiled from many sources. A number of approaches 230 

to thinning or filtering training data have been explored to reduce the effects of sampling bias on 231 

model predictions (Boria et al., 2014; Varela et al., 2014; Aiello-Lammens et al., 2015). For each 232 

taxonomic group, we thinned the sample of presence records by removing duplicate records within 233 

each model grid cell, since only one presence is required to confirm that a given grid cell contains 234 

suitable habitat (see Table 1 for number of grid cells containing presence records for each 235 

taxonomic group). We performed this duplicate removal using ENMTools (Warren et al., 2010). 236 

While removing duplicate records reduces sample size, it helps reduce the effect of sampling bias 237 

in heavily sampled areas. 238 

 239 

2.3 Environmental predictor data  240 
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We identified an initial set of environmental predictor variables (n = 108) for potential use in 241 

predictive models of DSC habitat suitability based on previous studies of DSC habitats within the 242 

U.S. Northeast. These variables included biological, chemical, and physical oceanographic 243 

properties of deep-sea environments and physical characteristics of the seafloor (Mortensen and 244 

Buhl-Mortensen, 2004; 2005; Lumsden et al., 2007; Packer et al., 2007; Roberts et al., 2009). We 245 

generated all data layers depicting the environmental predictor variables on a 370.65 m (hereafter 246 

370 m) resolution grid in a universal transverse Mercator projection (WGS 1984 UTM Zone 18N). 247 

We selected this resolution because of the vertical and horizontal spatial uncertainty associated 248 

with depth values from the CRM in deeper waters of the U.S. Northeast (Calder 2006; Poti et al., 249 

2012) and the horizontal uncertainty in the geographic positions of the DSC records. We excluded 250 

many of the environmental predictor variables prior to modeling for a variety of reasons including 251 

missing data, sparse data, artifacts in interpolated data and model products, low spatial resolution, 252 

and high collinearity with other considered variables (see Appendix A for details of the screening 253 

process). We performed a pairwise-correlation analysis on the environmental predictor data layers 254 

using the ENMTools software (Warren et al., 2010). For each pair of highly correlated (|r| > 0.9) 255 

environmental predictors, we excluded the predictor that was highly correlated with the most other 256 

predictors. The final set of 22 environmental predictor variables included measures of seafloor 257 

topography, seafloor substrate, and oceanography (Table 2).  258 

 259 

Table 2. Environmental predictor variables in final set. All variables are on a 370 m resolution 260 

grid. For seafloor topography variables, scale refers to the size of the Gaussian low-pass filter used 261 

to smooth the bathymetry dataset or the size of the focal neighborhood (for BPI). 262 

Variable Category 

Depth Seafloor topography 
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Slope (370 m scale) Seafloor topography 

Slope (5 km scale) Seafloor topography 

Slope of slope (1500 m scale) Seafloor topography 

Slope of slope (5 km scale) Seafloor topography 

Aspect (1500 m scale) Seafloor topography 

Aspect (5 km scale) Seafloor topography 

Rugosity (370 m scale) Seafloor topography 

Rugosity (1500 m scale) Seafloor topography 

Plan curvature / slope index (1500 m scale) Seafloor topography 

Plan curvature / slope index (5 km scale) Seafloor topography 

Profile curvature / slope index (1500 m scale) Seafloor topography 

Profile curvature / slope index (5 km scale) Seafloor topography 

Bathymetry Position Index (BPI) / slope index (20 km scale) Seafloor topography 

Surficial sediment mean grain size Seafloor substrate 

Surficial sediment percent gravel Seafloor substrate 

Surficial sediment percent sand Seafloor substrate 

Annual mean bottom dissolved oxygen Oceanography 

Annual mean bottom salinity Oceanography 

Annual mean bottom temperature Oceanography 

Annual mean surface chlorophyll-a concentration Oceanography 

Annual mean surface reflectance Oceanography 

 263 

2.3.1 Seafloor topography variables 264 

We acquired depth data for the study area from the 3 arc-second CRMs for the Northeast Atlantic 265 

and Southeast Atlantic (National Geophysical Data Center, 1999a, 1999b; downloadable at 266 

http://www.ngdc.noaa.gov/mgg/coastal/crm.html). We projected depth data from a geographic 267 

coordinate system to WGS 1984 UTM Zone 18N and bilinearly resampled to a grid resolution of 268 

92.6625 m (hereafter 92 m).  269 

 270 

Measures of seafloor topography can serve as proxies for water flow and other oceanographic 271 

patterns since flow interacts with seafloor geomorphology at various scales. From the 92 m 272 

resolution depth layer we calculated slope, slope of slope, and aspect using ArcGIS 10.0 (ESRI, 273 
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2011) and rugosity, plan curvature, and profile curvature using DEM Surface Tools (Jenness, 274 

2013). We also generated these seafloor topography variables at multiple spatial scales (370 m, 275 

1500 m, 5 km, 10 km, 20 km) to depict fine-scale and broad-scale differences in these variables 276 

(e.g., slope of fine-scale features like boulders vs. slope of broad-scale features like the continental 277 

shelf break). We did this by using a Gaussian low-pass filter to smooth the 92 m depth layer using 278 

focal neighborhoods at these scales and then calculating the seafloor topography variables from 279 

the resulting smoothed depth layers. We also calculated bathymetric position index (BPI) for focal 280 

neighborhoods with outer radii equal to each of these spatial scales using the Benthic Terrain 281 

Modeler tool (Walbridge et al., 2018). 282 

 283 

For each of the data layers depicting depth and seafloor topography at 92 m resolution, we derived 284 

corresponding data layers at 370 m resolution by calculating the aggregate mean in 4 x 4 grid cell 285 

non-overlapping blocks. At 370 m resolution, the impacts of spatial uncertainty of depth data on 286 

average depth values are minimized. However, at this resolution some fine-scale bathymetric 287 

features are lost. Because aspect (the direction the seafloor slope faces) is a circular variable, we 288 

converted its continuous values to categories representing the 8 cardinal directions. Plan curvature, 289 

profile curvature, and BPI were also classified into distinct categories using natural breaks and 290 

were combined with a classified version of slope (slope index) to create categorical data layers 291 

representing combinations of these variables and slope. This classification and combination with 292 

slope were important because plan curvature, profile curvature, and BPI can all take on a value of 293 

zero where the seafloor is either flat or at an inflection point where concavity and convexity in 294 

perpendicular directions are balanced. 295 

 296 
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2.3.2 Seafloor substrate variables 297 

We developed gridded data layers depicting predicted surficial sediment mean grain size and 298 

sediment composition (percent mud, percent sand, percent gravel) at 370 m resolution using seabed 299 

survey point data from the usSEABED Atlantic Coast Offshore Surficial Sediment Data Release, 300 

version 1.0 parsed and extracted databases (Reid et al., 2005; downloadable at 301 

http://pubs.usgs.gov/ds/2005/118/htmldocs/usseabed.htm). We filtered the survey point data to 302 

remove duplicate points and points not related to surficial sediments. We then modeled each 303 

variable as a linear combination of components representing a deterministic mean trend and a 304 

spatially structured stochastic process (Cressie, 1993). We used local polynomial interpolation to 305 

estimate the deterministic mean trend, and obtained the residual values by subtracting the trend 306 

surface prediction at each survey point location from the observed value of the variable. We 307 

quantified and modeled spatial autocorrelation in the residuals using semivariogram analysis and 308 

used the fitted semivariogram model parameters to perform ordinary kriging of the residuals. We 309 

summed the trend prediction and the kriging prediction to create the final gridded prediction. We 310 

performed all geostatistical analyses using ArcGIS 10.0 Geostatistical Analyst (ESRI, 2011). 311 

 312 

2.3.3 Oceanographic variables 313 

We used geostatistics (see Section 2.3.2 for details of the approach) to create gridded data layers 314 

depicting annual mean bottom dissolved oxygen, annual mean bottom temperature, and annual 315 

mean bottom salinity at 370 m resolution from in situ ocean survey data. We downloaded dissolved 316 

oxygen data from the World Ocean Database (WOD) Ocean Station Data (OSD) dataset (Boyer et 317 

al., 2013; Johnson et al., 2013). We obtained temperature and salinity data from the NOAA NMFS 318 

NEFSC Ecosystem Survey Branch bottom trawl survey database (accessed by S. Fromm on 319 
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December 20, 2011) and supplemented these records with data from the WOD OSD database 320 

(Boyer et al., 2013; Johnson et al., 2013), the Woods Hole Oceanographic Institute (WHOI) 321 

Hydrographic Database (accessed by D. Johnson on February 8, 2012), and the Marine Resources 322 

Monitoring, Assessment, and Prediction (MARMAP) Program (database accessed by D. Johnson 323 

on February 10, 2012).  Prior to interpolation, we filtered point survey data to extract only those 324 

measurements at depths within 5% of the 370 m depth data layer. 325 

 326 

As a proxy for ocean surface primary productivity, we created a gridded data layer depicting annual 327 

mean sea surface chlorophyll-a concentration. We extracted sea surface chlorophyll-a 328 

concentration data for the period 1998-2006 from high-resolution (~1.1 km) SeaWiFS satellite 329 

data, processed using standard OBPG reprocessing 5.1 algorithms 330 

(https://oceancolor.gsfc.nasa.gov/reprocessing/r2005/seawifs). From the same SeaWiFS data we 331 

created a gridded data layer depicting the annual sea surface reflectance, measured as the mean 332 

normalized water-leaving radiance at 670 nm wavelength (nLw-670 nm), as a proxy for sea surface 333 

turbidity. All SeaWiFS processing followed previously documented methods (Pirhalla et al., 334 

2009), except a de-speckling filter was also applied (Gonzalez and Woods, 1992). We projected 335 

data layers depicting annual mean climatologies for sea surface chlorophyll-a concentration and 336 

sea surface reflectance from a geographic coordinate system to WGS 1984 UTM Zone 18N and 337 

bilinearly resampled to 370 m resolution. 338 

 339 

2.4 Model framework 340 

2.4.1 Overview 341 

file:///C:/Users/matthew.poti/Desktop/MaxentDraft_04_04_12.docx%23_ENREF_11
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For each of the DSC taxonomic groups, we used a MaxEnt model framework to develop models 342 

with high predictive performance and to create spatial predictions depicting the relative likelihood 343 

of suitable habitat across the study area. Since the ability of models to predict habitat suitability or 344 

to resolve the relationships between environmental predictors and habitat suitability can be 345 

reduced when models are overly complex or overly simple (Yost et al., 2008; Warren and Seifort, 346 

2011), we developed a stepwise model selection process to choose the set of predictor variables 347 

for each taxonomic group that maximized predictive performance. To generate model predictions 348 

in a format that could be directly compared across taxonomic groups, we classified predictions of 349 

the relative likelihood of habitat suitability (i.e., the MaxEnt logistic output) into six classes of 350 

habitat suitability: low, medium-low, high, very high, and robust very high. 351 

 352 

2.4.2 Model fitting 353 

For each iteration of the stepwise model selection process, we created ten replicate samples from 354 

the DSC presence records. For each replicate, we split the DSC presence records into a model 355 

training subset containing 70% of the records and a model testing subset containing the remaining 356 

30% of the records. We fit models to each of the training subsets and evaluated model predictive 357 

performance using the corresponding testing subsets. We evaluated model predictive performance 358 

using the area under the receiver operating characteristic (ROC) curve (AUC; Fielding and Bell, 359 

1997), which indicated how well the models predicted DSC presences at the test locations 360 

compared to a random selection of locations (termed background points in MaxEnt). We calculated 361 

test AUC for each of the ten replicate models and mean test AUC across the models. Akaike’s 362 

information criterion, with a correction for small sample size (AICc; Akaike, 1974; Burnham and 363 

Anderson, 2002), provided a second measure of model predictive performance. We calculated 364 
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AICc using the ENMTools software (Warren et al., 2010) for each of the ten replicate models and 365 

mean AICc across the models.  366 

 367 

2.4.3 MaxEnt parameter tuning 368 

As recommended by Elith et al. (2011), we fit preliminary models using a range of values for 369 

several MaxEnt parameters - the regularization multiplier, number of background sample points, 370 

maximum iterations, and convergence threshold (see Merow et al., 2013 for a description of each 371 

parameter). Based on these preliminary models we chose settings for the regularization 372 

multiplier and number of background points of 2.0 and 20,000, respectively, instead of using the 373 

default values. These values consistently led to models with higher test AUC values. 374 

 375 

2.4.4 Stepwise model selection 376 

For each taxonomic group, we fit initial models with the full set of 22 potential environmental 377 

predictors using the methods described in Section 2.4.2. We then identified the most redundant 378 

environmental predictor in this initial model iteration as the predictor whose omission from model 379 

fitting resulted in the smallest reduction in mean test AUC. For the next iteration of the stepwise 380 

model selection procedure, we removed this environmental predictor and fit new models using the 381 

updated set of environmental predictors. We repeated this process until a single environmental 382 

predictor remained or the mean test AUC dropped below 95% of the mean test AUC for the initial 383 

model iteration. We then ranked the model iterations from best to worst in terms of predictive 384 

performance as measured by mean test AUC (highest mean test AUC = rank 1 to lowest = rank 385 

22) and mean AICc (lowest mean AICc = rank 1 to highest = rank 22) and averaged the two ranks. 386 
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We selected the model iteration (i.e., subset of environmental predictors) with the lowest average 387 

rank (1 = best, 22 = worst) as the best model iteration.  388 

 389 

2.4.5 Final model development  390 

For each taxonomic group, we fit a single, final MaxEnt model using all of the DSC presence 391 

records (i.e., no data subsetting) and the set of environmental predictors from the best model 392 

iteration identified through the model selection procedure. Using the final model, we predicted the 393 

relative likelihood of habitat suitability for each grid cell in the study area. Although this prediction 394 

(the MaxEnt logistic output) is an index scaled from 0 to 1, it should not be treated as a probability 395 

of occurrence. To convert the MaxEnt logistic output to probability of occurrence requires an 396 

estimate of prevalence. MaxEnt does not estimate prevalence and by default assigns it a value of 397 

0.5 (Elith et al., 2011). Therefore, it is important to treat the MaxEnt logistic output value only as 398 

a relative measure of habitat suitability among grid cells in the same model domain for the same 399 

taxonomic group.  400 

 401 

2.4.6 Classified maps of habitat suitability 402 

To allow direct comparisons of predictions of relative habitat suitability between MaxEnt models 403 

(e.g., across taxa), the MaxEnt logistic output is often converted into a binary map, where grid 404 

cells with values above a selected breakpoint are defined as suitable habitat and grid cells with 405 

values below the breakpoint are defined as unsuitable habitat (Elith et al., 2011; Merow et al., 406 

2013). However, choosing an appropriate breakpoint (e.g., one that is ecologically meaningful) 407 

can be challenging (Merow et al., 2013). Rather than choosing a single breakpoint, we first 408 

classified the MaxEnt logistic output (i.e., the relative likelihood of suitable habitat) into a map 409 
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with five habitat suitability classes (low, medium-low, medium, high, and very high), each defined 410 

by the ratio of the cost of a false positive error to the cost of a false negative error. For example, a 411 

2:1 ratio means that a false positive error (i.e., predicting suitable habitat in a location that is 412 

actually unsuitable habitat) is twice as costly as a false negative error. We used ROC curve analysis 413 

to identify the MaxEnt logistic output values that corresponded to ratios of 1:1, 2:1, 5:1, and 10:1 414 

and used these values as the breakpoints between the five habitat suitability classes.  We conducted 415 

the ROC curve analysis using the ‘ROCR’ package in R (Sing et al., 2005). By increasing the cost 416 

of false positive errors over the series of breakpoints, each successive breakpoint resulted in a 417 

habitat suitability class with a more constrained prediction of the area likely to contain suitable 418 

habitat, with the ‘very high’ class the least likely to overpredict suitable habitat. In addition, we 419 

identified grid cells for which predictions from all ten of the replicate models created during the 420 

best model iteration of model selection were classified in the ‘very high’ habitat suitability class. 421 

We labeled these grid cells as a sixth ‘robust very high’ habitat suitability class. 422 

 423 

2.4.7 Assessment of model performance 424 

As described in Section 2.4.2, we evaluated model performance for each taxonomic group using 425 

the mean test AUC for the ten replicate models from the best model iteration of model selection. 426 

In addition, as a measure of how well predictions of relative habitat suitability from the final model 427 

matched the data used to fit the model, we calculated the percentage of grid cells containing DSC 428 

presence records that were predicted to be in the ‘high’ or ‘very high’ habitat suitability classes by 429 

the final model. We also calculated the percentage of grid cells predicted by the final model to be 430 

in the ‘very high’ habitat suitability class that were also predicted to be in the ‘robust very high’ 431 

class by the best model iteration of model selection (i.e., all ten replicate models predicted the grid 432 
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cell to be in the ‘very high’ class). Since each of the replicate models used different subsets of the 433 

DSC presence records for model fitting, this metric provided a measure of how sensitive the model 434 

predictions were to variation in the location of the presence records. Finally, as a measure of the 435 

relative uncertainty in model predictions, we calculated the coefficient of variation (CV) for 436 

predictions of relative habitat suitability from the ten replicate models from the best model iteration 437 

of model selection. Using the CV, the ratio of the standard deviation to the mean, to examine the 438 

degree of variability in model predictions allows us to compare the variability in model predictions 439 

among model grid cells with drastically different mean prediction values. 440 

 441 

2.4.8 Environmental predictor variable importance and response curves 442 

MaxEnt provided several measures to assess the relative importance of the environmental predictor 443 

variables to model fitting (Phillips, 2009). We calculated these measures for each taxonomic group 444 

using the best model iteration from the model selection procedure. First, MaxEnt provided a 445 

measure of the relative contribution of each predictor variable to increasing the model gain over 446 

the course of model fitting, where the gain is defined as the penalized likelihood function 447 

maximized by MaxEnt during model fitting (Elith et al., 2011; Merow et al., 2013). Phillips (2009) 448 

cautions that the relative contribution values must be interpreted carefully as the values are 449 

dependent on the specific path used by the MaxEnt algorithm during model fitting and can be 450 

influenced by the correlation structure among the predictor variables.  451 

 452 

MaxEnt also provided a measure of predictor importance from a permutation test in which MaxEnt 453 

randomly permuted the values of each predictor variable at the training data and background point 454 

locations and determined the resulting decrease in the training AUC when evaluating the model 455 
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on the permuted data (Phillips, 2009). Models likely depend more heavily on predictors with 456 

greater values of permutation importance. Unlike the relative contribution values, permutation 457 

importance values are independent of the specific path used by the MaxEnt algorithm; however, 458 

permutation importance can be influenced by the correlation structure among the predictor 459 

variables. For both the relative contribution and permutation importance, we report the mean value 460 

across the ten replicate models of the best model iteration.  461 

 462 

At each iteration of model selection, MaxEnt fit a single-variable model for each individual 463 

predictor variable using the methods described in Section 2.4.2. From these single-variable models 464 

we calculated the mean test AUC for the ten replicate models fit for each environmental predictor 465 

variable. A predictor variable with a relatively higher mean training gain in a single-variable model 466 

is more useful for predicting suitable habitat. Similarly, a predictor with a relatively higher mean 467 

test gain or test AUC value is more useful for creating a model that generalizes better to new data. 468 

MaxEnt also performed predictor omission tests in which it fit a series of models omitting each 469 

individual predictor variable in turn. From these models we calculated for each environmental 470 

predictor variable the reduction in mean test AUC compared to the models fit with all the 471 

predictors. If a predictor variable is highly correlated with other predictor variables, omitting it 472 

will have little impact on model performance. However, if omitting a predictor variable resulted 473 

in a significant decline in mean test AUC, then that would suggest the predictor variable contains 474 

information not found in the other predictor variables that is useful for creating models that 475 

generalize to new data.  476 

 477 
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For each measure of predictor variable importance, we created a bubble plot depicting the values 478 

for each predictor variable and identified the three predictor variables with the highest values 479 

(hereafter ‘important’ predictor variables) for each taxonomic group. We plotted marginal 480 

response curves for each of these important predictor variables (Appendix B). It is important to 481 

recognize that variables selected or identified as important are not necessarily direct causal drivers 482 

of DSC distribution, but may simply serve as proxies for or correlates of direct mechanisms. Thus, 483 

we suggest that the response curves be used to develop hypotheses about drivers of DSC 484 

distribution that can be tested and validated with specific field surveys. 485 

 486 

3. RESULTS 487 

3.1 Model performance 488 

Model performance as measured by mean test AUC was generally excellent for all taxonomic 489 

groups, with values ranging from 0.84 to 0.97 (Table 3). Model fit, measured as the percentage of 490 

grid cells containing DSC presence records that were predicted to be in the ‘high’ or ‘very high’ 491 

habitat suitability classes by the final model, was best for Suborder Sessiliflorae and Family 492 

Caryophylliidae, and was poorest for Order Scleractinia and Family Flabellidae (Table 3). Model 493 

stability, measured as the percentage of grid cells predicted to be in the ‘very high’ habitat 494 

suitability class by the final model that were also predicted to be in the ‘robust very high’ class by 495 

the best model iteration of model selection, was greatest for the three taxonomic groups included 496 

under the Order Alcyonacea umbrella (Table 3). 497 

 498 

Table 3. Measures of model performance. Model fit was measured as the percentage of grid cells 499 

containing DSC presence records that were predicted to be in the ‘high’ or ‘very high’ habitat 500 
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suitability classes by the final model. Model stability was measured as the percentage of grid cells 501 

predicted in the ‘very high’ habitat suitability class by the final model that were also predicted to 502 

be in the ‘robust very high’ class by the best model iteration of model selection. 503 

Group Mean Test AUC Model Fit Model Stability 

Alcyonacea 0.87 44.6 62.3 

Gorgonian corals 0.92 60.1 60.6 

Non-gorgonian corals 0.92 55.3 67.2 

Scleractinia 0.94 30.6 48.0 

Caryophylliidae 0.97 76.6 43.2 

Flabellidae 0.92 30.1 37.7 

Pennatulacea 0.84 67.0 42.3 

Sessiliflorae 0.96 81.3 47.2 

Subselliflorae 0.85 72.7 47.1 

   504 

  505 

3.2 Spatial predictions 506 

Areas predicted as likely to contain suitable habitat for the Order Alcyonacea occurred in Mid-507 

Atlantic canyons that incise the continental shelf and Northeast canyons that do not incise the shelf 508 

(Figure 3a). Gorgonian corals were predicted to be more tightly restricted to canyons (Figure 3b), 509 

whereas predicted suitable habitat for non-gorgonian corals included more intercanyon areas 510 

(Figure 3c). Models for all three taxonomic groups in the Order Alcyonacea showed a tendency 511 

toward higher predicted habitat suitability in northern canyons.  512 

 513 

Areas predicted as likely to contain suitable habitat for the Order Scleractinia were also 514 

concentrated on the shelf and slope, but were more diffuse with highest concentrations near the 515 

central portion of the study area, in the broad vicinity of Hudson Canyon (Figure 3d). Suitable 516 

habitat for the Family Caryophyllidae was limited to the shallower areas of the shelf break and 517 

upper slope in and near canyons (Figure 3e). Similar to predictions for the order-level model, 518 
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suitable habitat for the Family Flabellidae was also diffuse and covered a broader depth range than 519 

that predicted for Family Caryophyllidae (Figure 3f).  520 

 521 

Suitable habitat for the Order Pennatulacea was predicted to occur broadly across the outer 522 

continental shelf, continental shelf-break, upper-middle slope and in basins of the Gulf of Maine 523 

(Figure 3g). Suitable habitat for the Suborder Sessiliflorae was predicted to occur exclusively near 524 

the shelf break and deeper on the continental slope at depths much deeper than those predicted as 525 

suitable in the order-level model (Figure 3h).  In contrast, areas of suitable habitat for the Suborder 526 

Subselliflorae were similar to the areas predicted by the order-level model (Figure 3i).  527 

 528 
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 529 

Figure 3. Maps of predicted habitat suitability for (a) Alcyonacea, (b) gorgonian corals, (c) non-530 

gorgonian corals, (d) Scleractinia, (e) Caryophylliidae, (f) Flabellidae, (g) Pennatulacea, (h) 531 

Sessiliflorae, (i) Subselliflorae. The black lines indicate the extent of the study area. The gray lines 532 
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denote the 200 m depth contour. Habitat suitability classes: low (L), medium-low (M-L), medium 533 

(M), high (H), very high (VH), robust very high (RVH).  534 

 535 

3.3 Environmental predictor variable importance 536 

For Order Alcyonacea, depth, slope of slope at 1500 m scale, rugosity at 1500 m scale, and annual 537 

mean bottom salinity were identified as important environmental predictor variables by multiple 538 

measures of importance (Figure 4). Slope at 5 km scale, BPI/slope index at 20 km scale, and 539 

surficial sediment percent gravel were each important environmental predictors by one measure of 540 

importance. Similar to the order-level model, multiple measures of predictor importance identified 541 

depth and rugosity as important environmental predictor variables for gorgonian corals. However, 542 

in this instance, rugosity was important at the 370 m scale. Additionally, surficial sediment mean 543 

grain size, and surficial sediment percent sand were important environmental predictor variables 544 

for gorgonian corals according to multiple measures of predictor importance. Slope at 370 m scale, 545 

slope of slope at 5 km scale, and BPI/slope index at 20 km scale were important by one measure 546 

of importance (Figure 4). For non-gorgonian corals, depth, slope of slope at 1500 m scale, rugosity 547 

at 370 m scale, and annual mean sea surface chlorophyll-a concentration were identified as 548 

important environmental predictor variables by multiple measures of importance (Figure 4). Plan 549 

curvature/slope index at 1500 m scale and surficial sediment percent sand were important 550 

according to one measure of importance.  551 

 552 

Depth and annual mean bottom salinity were identified as important environmental predictor 553 

variables for Order Scleractinia by all four measures of predictor importance (Figure 4). Surficial 554 

sediment percent gravel was important according to two measures of importance, while slope at 5 555 
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km scale and annual mean bottom dissolved oxygen were each important by one measure. Depth, 556 

slope at 5 km scale, slope of slope at 1500 m scale, annual mean bottom salinity, annual mean 557 

bottom dissolved oxygen, and annual mean sea surface chlorophyll-a concentration were each 558 

important environmental predictors by two measures of predictor importance for Family 559 

Caryophyllidae (Figure 4). Like the order-level model, depth and annual mean bottom salinity 560 

were identified as important environmental predictors for Family Flabellidae by all four measures 561 

of importance (Figure 4). Rugosity at 370 m scale, surficial sediment percent gravel, annual mean 562 

bottom temperature, and annual mean sea surface chlorophyll-a concentration were each important 563 

environmental predictors according to one measure of importance.  564 

 565 

For Order Pennatulacea, annual mean bottom dissolved oxygen was identified as an important 566 

environmental predictor variable by all four measures of predictor importance, while depth and 567 

annual mean bottom temperature were identified as important by three measures of importance 568 

(Figure 4). Surficial sediment percent sand and annual mean sea surface reflectance were each 569 

important environmental predictors by one measure of importance. Depth and slope of slope at 570 

1500 m scale were recognized as important environmental predictors for Suborder Sessiliflorae by 571 

all four measures of predictor importance (Figure 4). Surficial sediment mean grain size and 572 

surficial sediment percent sand were each identified as important environmental predictors by two 573 

measures of importance. Depth also was identified as an important environmental predictor by all 574 

four measures of importance for Suborder Subselliflorae, while annual mean bottom dissolved 575 

oxygen and annual mean bottom salinity were considered important environmental predictors 576 

according to three measures of importance (Figure 4). Surficial sediment mean grain size and 577 
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annual mean sea surface reflectance were each identified as important environmental predictors 578 

by one measure of importance.  579 

 580 

 581 

Figure 4. Bubble plots depicting environmental predictor variable importance for each taxonomic 582 

group based on (a) relative contribution, where the area of a circle is proportional to the relative 583 

contribution of each environmental predictor variable to increasing the model gain over the course 584 
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of model fitting, (b) permutation importance, where the area of a circle is proportional to the 585 

decrease in training AUC when evaluating models on the permuted training and background data, 586 

(c) single variable tests, where the area of a circle is proportional to the mean test AUC for models 587 

built with each individual environmental predictor variable, and (d) omission tests, where the area 588 

of a circle is proportional to the decline in mean test AUC when each environmental predictor 589 

variable is omitted from models. 590 

   591 

4. DISCUSSION 592 

Prior to this study, regional-scale models predicting DSC habitat suitability for the entire U.S. 593 

Northeast did not exist. Regional DSC habitat suitability models in the Northwest Atlantic covered 594 

more northerly portions of the Atlantic continental margin including the U.S./Canada 595 

transboundary region (Cape Breton, Nova Scotia to Cape Cod, MA; Bryan and Metaxas, 2006, 596 

2007) and the Newfoundland and Labrador regions of Canada (Gullage et al., 2017), with little 597 

overlap with our study area.  Furthermore, global models of DSC habitat suitability have a 598 

horizontal resolution on the order of 1000s of meters and did not use regional-scale datasets 599 

depicting seafloor topography and substrate characteristics that are critical for constraining 600 

predictions of DSC distributions (Davies et al., 2008; Tittensor et al., 2009; Davies and Guinotte, 601 

2011; Yesson et al., 2012). Using the novel modeling approach outlined here, we have created 602 

models of DSC habitat suitability that are of greater utility for regional conservation, management, 603 

and exploration efforts in the U.S. Northeast. By including environmental predictor datasets 604 

derived from regional data (e.g., bathymetry and seafloor topography measures from the NOAA 605 

CRM, surficial sediment characteristics generated from a regional USGS database), we were able 606 

to model habitat suitability at increased spatial resolution. In addition, we implemented a stepwise 607 
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model selection procedure to develop models with high predictive performance that were also 608 

interpretable. The model predictions have been ground-truthed during numerous sampling surveys. 609 

Initial review of imagery from these surveys has indicated that the models were successful in 610 

predicting locations of suitable habitat for DSCs (Nizinski et al., unpublished data), thus providing 611 

further evidence that the methodology described here has provided realistic predictions of where 612 

suitable habitat is likely to occur in this region. Additional statistical analysis using this data to 613 

ground-truth the models is forthcoming.  614 

 615 

4.1 Model performance 616 

Models for all taxonomic groups had mean test AUC scores greater than 0.8, generally indicative 617 

of excellent model performance. However, there is considerable criticism of the use of AUC values 618 

to assess model performance of species distribution models, particularly presence-only models 619 

(Lobo et al., 2008; Jiménez-Valverde 2012; Yackulic et al., 2013). For example, while models for 620 

rare species tend to have relatively higher AUC values (Franklin et al., 2009), AUC may 621 

overestimate model performance for these models because they tend to be overfit to limited 622 

occurrence data (Lobo et al., 2008; Breiner et al., 2015). We developed additional statistics to 623 

assess model fit and model stability to avoid reliance on AUC as the only measure of model 624 

performance. Model fit and model stability were generally greater for the suborder- and family-625 

level groups when compared to their respective order-level groups. Model performance may be 626 

poorer for order-level groups because the records that comprise these groups represent species that 627 

do not necessarily have the same habitat requirements (e.g., within the Order Alcyonacea, 628 

members of the genus Acanella typically occur on soft substrates whereas members of the genus 629 

Paragorgia occur on hard substrates). This suggests that, when possible, model groups based on 630 
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taxonomy should be at higher taxonomic resolution and/or be comprised of taxa whose 631 

distributions can reasonably be expected to have similar relationships to the environmental 632 

predictor variables used in the models.     633 

 634 

4.2 Implications for natural history and biogeography of DSCs in the U.S. Northeast 635 

A complete evaluation of the habitat suitability models developed here in light of previous work 636 

on the natural history and biogeography of DSCs in the U.S. Northeast is beyond the scope of this 637 

paper. However, we will highlight a few relevant comparisons of previous observations to our 638 

model predictions. 639 

 640 

Since the 1980s, the majority of in situ surveys for DSCs have occurred in submarine canyons, 641 

particularly (from north to south) Heezen, Lydonia, Oceanographer, Hendrickson, Baltimore, and 642 

Norfolk canyons (Packer et al., 2007; 2017b). The larger, northern canyons such as Lydonia and 643 

Oceanographer have hard substrate along most of their axes and walls that support many DSCs. 644 

The slope south of Georges Bank is covered mostly by soft substrates, supporting, with some 645 

exceptions, mainly scleractinians on the upper slope and pennatulaceans deeper than ~1500 m. 646 

Some harder substrate is found at depths greater than 1400 m on the mid-Atlantic slope off New 647 

Jersey. Here, members of the orders Pennatulacea and Scleractinia are common but sparsely 648 

distributed on the upper slope. Pennatulaceans and Acanella arbuscula (an alcyonacean, gorgonian 649 

coral) occur on the lower continental slope. The larger, southern canyons such as Baltimore and 650 

Norfolk canyons have less hard substrate, some of which occurs at depths much shallower than 651 

that observed in the northern canyons. Thus, large coral assemblages, composed mainly of 652 

alcyonaceans, occur in much shallower water than in the northern canyons. Additionally, 653 
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pennatulaceans occur on the upper slope whereas pennatulaceans and A. arbuscula are commonly 654 

observed on the lower slope (Packer et al., 2017b). In general, the predicted distributions of 655 

suitable DSC habitat from our models support these observations of the broad-scale distribution 656 

patterns of DSC in the region (Figure 3). 657 

 658 

Alcyonaceans are generally more densely distributed and diverse in the canyons than on the 659 

adjacent slope. Some species, such as those restricted to hard substrates, are only found in the 660 

canyons while other species that frequently occur on soft substrates, such as Acanella arbuscula, 661 

are found both in canyons and on the slope (Hecker et al., 1980). The observation that many DSCs 662 

in the Order Alcyonacea are restricted to the canyons is supported by our model predictions for 663 

the three taxonomic groups in Order Alcyonacea (Figure 3). In particular, areas predicted to 664 

contain suitable habitat for gorgonian corals, the most likely of all modeled taxonomic groups to 665 

form complex, rigid, three-dimensional structure that can serve as important habitat for fishes and 666 

invertebrates, were concentrated in canyons, particularly on steep canyon walls.  667 

 668 

However, there appear to be two distinct distributional patterns for species in the Order Alcyonacea 669 

(Watling and Auster, 2005). Most are deep-water species that occur at depths >500 m on the lower 670 

continental slope and rise (e.g., species in the genera Acanthogorgia, Acanella, Anthomastus, 671 

Anthothela, Clavularia, Lepidisis, Radicipes and Swiftia). Other species (e.g., Paragorgia 672 

arborea, Primnoa resedaeformis, Paramuricea spp.) occur on the continental shelf to the upper 673 

continental slope at depths of <500 m. Of the latter species, Paragorgia arborea and Primnoa 674 

resedaeformis are frequently documented. These species are not only reported as being widespread 675 

in the Northwest Atlantic (Tendal, 1992; Breeze et al., 1997; Bryan and Metaxas, 2006), but, more 676 
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specifically, are commonly observed on the Northeast Peak of Georges Bank (Theroux and 677 

Grosslein, 1987), in the deep basins of the Gulf of Maine (e.g., Jordan Basin) and other areas where 678 

fishing is limited due to rough topography (Auster 2005; Auster et al., 2013). Additionally, many 679 

species represented in the Order Alcyonacea, several of which were recently discovered, are 680 

dominant members of the epifaunal assemblage at the New England Seamounts (Packer et al., 681 

2007; Packer et al., 2017a, 2017b). Because the Alcyonacea groups were modeled at the order and 682 

suborder level, these finer-scaled distributional patterns observed for specific genera or species 683 

were not captured by our models. 684 

 685 

Most representatives of Order Scleractinia in this region are small, solitary organisms (e.g., 686 

Dasmosmilia lymani, Desmophyllum dianthus, Flabellum spp.) found on the edge of the shelf as 687 

well as in the canyons and on the New England Seamounts (Cairns, 1981; Cairns and Chapman, 688 

2001; Packer et al., 2007; Packer et al., 2017a, 2017b). Colonial structure-forming scleractinians 689 

such as Solenosmilia variabilis and Lophelia pertusa, may also occur on hard substrates in the 690 

canyonized areas of the continental shelf-break and slope as well as on seamounts, but have not 691 

been well-documented in the historical record (Hecker, 1980; Hecker et al., 1980; Hecker et al., 692 

1983; Moore et al., 2003, 2004) and, therefore, were not present in our DSC database. Predictions 693 

of suitable DSC habitat from our models support the observation that species in the Order 694 

Scleractinia occupy a wider range of habitats. Areas predicted to have ‘high’ or ‘very high’ habitat 695 

suitability for taxonomic groups in Order Scleractinia occurred across the continental shelf and 696 

slope and were not restricted to the canyons like predictions for Order Alcyonacea (Figure 3). This 697 

pattern is likely driven by the fact that the only representatives of Order Scleractinia in our DSC 698 

database for the U.S. Northeast were solitary cup corals, which can be found on both hard and soft 699 
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substrates. For example, species of the genus Flabellum can colonize both hard and soft substrates; 700 

members of the genus Desmophyllum generally colonize hard substrates, Dasmosmilia species 701 

colonize soft substrates, and members of the genus Javania generally colonize hard substrates 702 

(Packer et al., 2007, 2017b). Order Scleractinia was represented overwhelmingly in our DSC 703 

database by the two genera Dasmosmilia and Flabellum, with a large number of Dasmosmilia 704 

records from the Hudson Canyon vicinity. This diffuse pattern is in contrast to what would be 705 

expected for framework-forming scleractinians such as L. pertusa and S. variabilis. These colonial 706 

scleractinians are usually restricted to consolidated substrates and often occur on steep slopes such 707 

as canyon walls. However, the only records of L. pertusa in our database were of dead rubble and 708 

were excluded from analysis.  709 

 710 

Although the majority of species in Order Pennatulacea in this region are found on the continental 711 

slope, in the canyons, and on the seamounts, two of the most common and widespread species are 712 

found over wide swaths of the continental shelf. Pennatula aculeata (the common sea pen) is 713 

common in the Gulf of Maine and occurs as far south as the Carolinas (Langton et al., 1990; Packer 714 

et al., 2007), whereas Stylatula elegans (the white sea pen) is found on the outer shelf in the mid-715 

Atlantic region (Theroux and Wigley, 1998). From our models, areas with ‘high’ or ‘very high’ 716 

habitat suitability for Order Pennatulacea were predicted across the continental shelf and slope as 717 

well as basins of the Gulf of Maine (Figure 3). Looking at the nested suborder-level models, it is 718 

clear that this pattern was driven primarily by records in our DSC database from Suborder 719 

Subselliflorae, specifically representatives of the genera Pennatula and Stylatula, taxa known to 720 

be widely distributed in soft sediment habitats of the continental shelf and slope (Packer et al., 721 

2007, 2017b). In contrast, predictions of suitable habitat for sea pens in Suborder Sessiliflorae 722 
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were generally more restricted to the continental slope, primarily in canyons but occurring in inter-723 

canyon areas as well. The largest patches of suitable habitat for the Suborder Sessiliflorae were 724 

predicted to occur in the southern portion of the domain. These results illustrate that order-level 725 

models may misrepresent the distributions of specific groups within the order. Numerically 726 

dominant species can mask distributions of other taxa, particularly when taxa within the order have 727 

disparate habitat requirements.  728 

 729 

Overall, the predictions of DSC habitat suitability generated from our models generally support 730 

the observations regarding broad-scale DSC distributions presented here. However, models 731 

generated for individual species or genera would provide information about finer-scale distribution 732 

patterns and would greatly expand our knowledge of DSC biogeography in the U.S. Northeast. 733 

 734 

4.3 Insights from environmental predictor variables 735 

Not surprisingly, depth, the dominant gradient over which fauna are distributed in this system, 736 

was identified as important by at least two and sometimes all measures of environmental 737 

predictor variable importance for each of the taxonomic groups. In addition to depth, measures of 738 

seafloor topography were consistently important in models for the taxonomic groups within 739 

Order Alcyonacea. Slope at a broader scale may be an important predictor for coral taxa, such as 740 

gorgonian corals, that are predominantly found on the continental slope in the Northwest Atlantic 741 

(Jones, 2008). Broad-scale slope and slope of slope (e.g., 1.5 and 5 km scales) may also be 742 

proxies for features that accelerate and direct tidal currents in the region, and thereby deliver 743 

food and nutrients to DSC ecosystems (Thiem et al., 2006). Slope may also be a proxy for 744 

distribution of hard substrates (Metaxas and Bryan, 2007). In addition, measures of surficial 745 
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sediment characteristics were among the most important environmental predictors for the 746 

gorgonian corals. 747 

   748 

Bottom salinity was identified as important for the taxonomic groups within Order Scleractinia. 749 

Given that salinity is fairly constant in deep waters (~34-35 psu), deep-sea scleractinian corals 750 

occur within a relatively narrow salinity range. Thus, the importance of bottom salinity as a 751 

useful predictor of suitable habitat for Scleractinia would be expected. 752 

  753 

Of the taxonomic groups modeled, members of the Order Pennatulacea groups are the only taxa 754 

most frequently found in soft sediments. Thus, surficial sediment mean grain size would be 755 

expected to be an important predictor for sea pen habitat suitability. However, measures of 756 

surficial sediment characteristics were far more important for Suborder Sessiliflorae than for the 757 

other groups within Order Pennatulacea. For the other groups, measures of bottom salinity, 758 

temperature, and dissolved oxygen were consistently more important. 759 

 760 

Depth, slope and other aspects of geomorphology, sediment characteristics, and temperature have 761 

all been recognized in previous studies as important correlates of DSC distribution (e.g., Davies 762 

and Guinotte, 2011; Yesson et al., 2012). Although only identified as an important predictor 763 

variable for a few of our taxonomic groups (non-gorgonian corals, Order Scleractinia, Family 764 

Flabellidae), other studies of DSC distributions in the Northwest Atlantic (Bryan and Metaxas, 765 

2007), North Atlantic (Knudby et al., 2013) and the southern California Bight (Huff et al., 2013) 766 

have identified surface chlorophyll-a as an important predictor of DSC habitat. Thus, there may 767 

be an important link between surface primary productivity and DSC habitat suitability. A statistical 768 
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interaction between surface turbidity and surface chlorophyll-a may represent a proxy for areas of 769 

higher flux of particulate organic carbon (POC) and dissolved organic carbon (DOC) from the 770 

mixed layer (Knudby et al., 2013).  771 

 772 

Depth and bottom temperature are consistently recognized as important factors influencing 773 

distributions of deep-sea corals. Predicted depth and temperature ranges for our modeled groups 774 

(Appendix B) are within those reported in the literature (Packer et al., 2007; Tittensor et al., 2009; 775 

Davies and Guinotte, 2011; Yesson et al., 2012; Guinotte and Davies, 2014). Dissolved oxygen, 776 

salinity, and sediment characteristics may directly influence DSC distributions, but may also be 777 

proxies for other oceanographic processes. For example, mean sediment grain size is highly 778 

correlated with tidal current energy (Visher, 1969).  779 

 780 

4.4 Methodological advances to presence-only modeling 781 

Fusion of presence-only datasets with environmental predictor databases represents a powerful 782 

tool in species distribution modeling, particularly for deep-sea biota for which absence data are 783 

limited. Even in the presence of sampling bias (usually inevitable in presence-only datasets), the 784 

resulting models synthesize all available information on the distribution of a taxonomic group with 785 

knowledge of relevant environmental variables. Such models can inform conservation and 786 

management planning while also providing a foundation for field survey and exploration efforts 787 

to validate and improve models. However, it is important that results be carefully interpreted and 788 

applied. 789 

 790 
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In developing habitat suitability models for the U.S. Northeast region, we were constrained 791 

primarily by the type of available DSC records (presence-only with no confirmed absences). 792 

Additionally, we were restricted by the number and quality of available environmental predictor 793 

variable datasets. Given these constraints, we aimed to extract the maximum possible information 794 

from the DSC records as well as any potential environmental predictor variables available from 795 

oceanographic, geomorphological, and environmental data mining. Recognizing the limitations of 796 

presence-only datasets, we introduced several innovations to mitigate potential pitfalls. We 797 

developed a novel stepwise model selection algorithm for MaxEnt based on a weighted 798 

combination of cross-validation AUC and training AICc statistics. Additionally, we presented a 799 

method to classify MaxEnt logistic predictions to create comparable habitat suitability classes 800 

across different models. We successfully used those methods to improve the predictive 801 

performance, parsimony, and interpretability of the final selected models, and to facilitate 802 

comparisons of habitat suitability across taxa. These techniques are broadly applicable to habitat 803 

suitability modeling of presence-only data. 804 

 805 

 806 

 807 

4.5 Caveats and limitations 808 

Although we present some significant advances to presence-only models using MaxEnt, there are 809 

several key caveats and limitations to keep in mind. First, care must be taken when making 810 

comparisons within or between model/taxonomic groups. For example, the predicted habitat 811 

suitability values are not probabilities of occurrence, and cannot be compared across models for 812 

different groups. While our habitat suitability classes can be compared across taxonomic groups, 813 
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the choice of breakpoints (i.e., false positive error to false negative error cost ratios) defining 814 

these classes involves some subjectivity not readily conveyed in map form. 815 

 816 

Predictions of DSC habitat suitability are affected by sampling bias. Models generated from 817 

presence-only data will only predict suitable habitat in areas similar to areas where DSCs were 818 

found previously; the environmental envelope cannot be expanded. Therefore, future survey 819 

efforts should always include some “risky” sampling in locations outside areas predicted to be 820 

suitable habitat to expand the extent of the environmental space that has been sampled. Other 821 

modeling techniques (e.g., presence-absence or abundance models) could use information 822 

collected in less suitable habitat. Model predictions from this study do not necessarily correlate 823 

with abundance, density, or diversity. Future field surveys are needed to assess such 824 

relationships.  825 

 826 

The spatial scale at which models can be applied is limited by the accuracy of the source data. In 827 

this case, the 370 m model grid cell size was chosen with key environmental parameters (e.g., 828 

bathymetry) and the spatial precision of presence records in mind. The maps represent habitat 829 

suitability at the resolution of the prediction grid. Predictions of habitat suitability, therefore, are 830 

at the scale of a grid cell; no more specific location should be inferred.  831 

 832 

The temporal scale of predictions must also be considered. Models presented in this study are 833 

based on historical records collected from the 1800s to the present. Given the slow growth rates 834 

of many DSC taxa, it is possible that predictions of suitable habitat will include areas in which 835 

DSC existed previously, but have since been eliminated by disturbance. However, habitat 836 
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suitability models are also expected to overpredict actual occurrence for other reasons. For 837 

example, the inherent stochasticity in distributions of sessile organisms with a biphasic life cycle 838 

and the statistical realities of predicting a relatively rare habitat can lead to overpredictions of 839 

coral occurrences. Even conservative thresholds can be shown to overpredict actual occurrence 840 

unless false positive costs are weighted heavily. Moreover, our models do not account for habitat 841 

dynamics. Bottom substrate is known to be dynamic at the scale of years to decades (Keller and 842 

Shepard, 1978; Brothers et al., 2013). Additionally, changes in climatological factors may alter 843 

relevant oceanographic conditions in DSC habitat, including bottom temperature and carbonate 844 

system parameters, over long-time scales (Davies and Guinotte, 2011). Such issues deserve 845 

further study. 846 

 847 

We note that some of the environmental predictor variables we use are models themselves, 848 

whether derived through interpolation, geostatistical modeling, or more complex hydrodynamic 849 

modeling. These products have associated uncertainty for which we did not directly account. As 850 

a result, caution should be used when applying the habitat suitability models on a pixel by pixel 851 

basis. The underlying assumption that the environmental conditions at a pixel are well-852 

represented by the datasets we have compiled should be field tested and validated before 853 

considering precise application of the models at the pixel level in any given area. 854 

 855 

It is important to bear in mind that the taxonomic groups modeled were chosen on the basis of 856 

the species occurring in the available DSC data. For example, our historical database for the U.S. 857 

Northeast is strongly biased for solitary scleractinians. Solitary scleractinians and colonial 858 

scleractinians such as Lophelia pertusa are sometimes found in different types of habitats (soft 859 
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sediments versus steep canyon walls). Thus, the Scleractinia model we produced is likely not 860 

typical of deep-sea scleractinians as a whole. Our results reflect predictions only for taxa actually 861 

included in the records used to fit the models. 862 

 863 

Notwithstanding these caveats and limitations, we have shown that presence-only data can be 864 

used to produce maps of predicted habitat suitability that, if carefully applied, can ensure that the 865 

best available synthesis of scientific information is available for management, conservation and 866 

planning efforts. 867 

 868 

4.6 Management and conservation implications 869 

As syntheses of available DSC presence and environmental predictor information in the region, 870 

the models and maps described here have met important information needs for New England 871 

(NEFMC; https://s3.amazonaws.com/nefmc.org/200102_Coral_Amendment-final-with-IRFA-edits.pdf, 872 

https://s3.amazonaws.com/nefmc.org/Appendix-B-Coral-zone-boundary-development.pdf) and Mid-873 

Atlantic (MAFMC; http://www.mafmc.org/s/DeepSea-Corals-EA_Signed-FONSI.pdf) Fishery 874 

Management councils, regional spatial planning processes (e.g., 875 

https://portal.midatlanticocean.org/data-catalog/conservation/ Habitat for soft corals (modeled)), as 876 

well as guided targeted field survey and exploration efforts to expand and confirm knowledge of 877 

DSC distribution in the region. Additionally, a high correlation between recent coral observations 878 

and locations predicted to be suitable coral habitat has increased confidence in using the regional 879 

DSC habitat suitability models to inform current and future management decisions of the Councils. 880 

 881 
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Available global models of DSC distribution (e.g., Yesson et al., 2012) do not incorporate the 882 

latest available regional data, and more importantly, do not provide the required spatial resolution 883 

to assist regional spatial planning efforts in a meaningful way. Thus, in addition to the 884 

methodological and ecological implications of the work presented here, results are expected to 885 

advance scientific contributions to real-world applications at the U.S. state, regional and federal 886 

scale. 887 

 888 

5. CONCLUSIONS AND FUTURE DIRECTIONS 889 

This is the first comprehensive DSC habitat modeling study to be published for the U.S. Northeast. 890 

Despite the limitations of presence-only data, we have demonstrated several novel extensions to 891 

the traditional MaxEnt analysis workflow that improve model selection, accuracy assessment, and 892 

comparability of results across disparate taxonomic groups. These approaches are applicable to all 893 

other species distribution modeling efforts that utilize presence-only data, and could be used to 894 

improve analysis and interpretation of results of species distribution models based on MaxEnt—a 895 

critical tool for sparsely documented deep-sea taxa in particular.  896 

 897 

In the interim between development and publication, these models have provided the basis for and 898 

contributed to providing much needed information for spatial planning, management, conservation 899 

and ocean exploration efforts in the region. An extensive amount of fieldwork, focused on 900 

distributions, abundances, and diversity of DSC, has been conducted in the U.S. Northeast 901 

recently. Multibeam sonar systems have collected high-resolution bathymetry and spatial 902 

information at spatial scales below those resolved by this regional model (~370 m) throughout 903 

much of the region. Remotely-operated vehicles and towed-camera systems collected high-904 
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resolution imagery, documenting both coral presence and absence in areas surveyed. But most 905 

importantly, these field surveys were planned in conjunction with the model predictions developed 906 

here. Thus, we have had numerous opportunities to ground-truth the models and to gather new 907 

data for subsequent improvements in the resolution and predictive accuracy of these models. This 908 

iterative, integrated modeling and field survey process has proven to be an extremely successful 909 

protocol. 910 

 911 

The next generation of models for the U.S. Northeast are currently under development. We believe 912 

that a systematic approach to DSC spatial ecology should be the standard operating procedure: 913 

development of synthetic models based on all available knowledge, followed by model-driven 914 

field surveys and validation, resulting in the production of improved and field validated spatial 915 

models. This iterative approach, when integrated with management processes, is a powerful tool 916 

for science-based conservation, management, and spatial planning (MacLean et al., 2017; 917 

Georgian et al., 2019). 918 

 919 
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